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1. Introduction 

Traditional metal plasticity models, formulated in terms of strain rates and stresses and 
incorporated in large-scale numerical analyses, provide useful solutions for a wide range of 
problems. Details of the material microstructure interactions that govern the deformation 
response are assumed to occur at length scales not resolvable by the simulations and are captured 
implicitly in the constitutive relations. For example, dependence of the yield strength on grain 
size through the Hall-Petch effect can be incorporated by including grain size in the constitutive 
model without tracking the details of dislocation interactions with grain boundaries.  

In simulations with resolution at the grain scale, as in multiscale modeling, the length scales 
dictating some hardening mechanisms are comparable to the numerical discretization. The 
torsion experiments of Fleck and Hutchinson (1997) clearly demonstrate increased strength with 
decreasing size for wires 10’s of microns in diameter. The strengthening is attributed to gradients 
in the crystal lattice orientation, which create boundaries where dislocations accumulate. These 
structures both store energy and provide resistance to further dislocation motion (e.g., Baskaran 
et al., 2010). Applying traditional crystal plasticity models (e.g., Asaro, 1983; Peirce et al., 1983) 
to investigate the strengthening in a multiscale framework will not be successful because the 
models are formulated in terms of traditional continuum variables of strain rate and stress, and 
there is no underlying microstructure length scale that would produce a size effect.  

Numerous studies over the past decade have investigated ways to incorporate a length scale into 
the continuum crystal plasticity model. Most focus on microstructure gradients, as it is 
recognized that both the Hall-Petch effect and the results of Fleck and Hutchinson are tied to 
gradients. To cite just a few of the many examples, models have examined continuously 
distributed dislocations (Acharya, 2001), dislocation density gradients (Arsenlis et al., 2004), and 
gradient related state variables (Gurtin et al., 2007; Gerken and Dawson, 2008; Mayeur et al., 
2011).  These formulations all introduce additional variables into the solution, which creates two 
difficulties. The first is fitting these into a solution scheme with appropriate evolution equations, 
and the second is determining an appropriate prescription for boundary conditions on the new 
variables. The former is typically the focus of the research. The latter often remains an open 
issue. For example, what is the value of a strain gradient at a free surface versus an interface, or 
how should dislocation density be prescribed as a boundary condition? 

When using the traditional crystal plasticity model in a finite element code, the deformation of 
neighboring elements is only connected through shared nodal displacements and force 
equilibrium at the nodes. Even though dislocations associated with slip travel through the 
material, the transmission of dislocations from one element to another is not represented, and the 
resulting coordination in slip deformation is not captured. The effective result is that all finite 
element boundaries are infinite sources and sinks for dislocations. Advanced crystal plasticity 
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formulations, such as those based on lattice orientation gradients, often include the continuity of 
dislocation flux across finite element boundaries as a byproduct. However, the importance of this 
physical constraint is not explored independently.  

The goal of the current work is to determine if a simpler approach can be used to address the 
length scale and other deficiencies of the classical crystal plasticity model. It is a search in 
pursuit of Occam’s razor, the law of parsimony. The starting point is enforcing dislocation flux 
continuity across finite element boundaries. This uses existing solution variables and the 
boundary conditions are conceptually straightforward. Dislocation flux is unconstrained at free 
surfaces and zero at rigid boundaries and intermediate at grain boundaries that are sources and 
sinks for dislocations. The flux gradients can be used to infer the evolution of dislocation 
gradients that lead to lattice orientation gradients. 

This report presents the formulation and results from the first year’s effort on the two-year 
Director’s Research Initiative (DRI) project. The finite element code, the crystal plasticity 
model, and the dislocation flux continuity relations are presented in section 2. Section 3 contains 
results from verification calculations and initial simulations exploring the effects of flux 
continuity and hardening associated with slip gradients. The report concludes with a discussion 
of the results and several issues that were identified. 

2. Finite Element Code, Crystal Plasticity Model, and Slip Continuity 

The proposed model is non-local, where the material response in a finite element depends 
directly on the structure evolution in neighboring elements. Only a few existing finite element 
frameworks would accommodate such a model without substantial modifications. Another goal, 
that further restricts the use of existing software, is an explicit dynamic implementation that can 
be used in high rate deformation applications. Given the requirements, it was determined that it 
would be more efficient and more effective to create a simple, explicit finite element research 
code rather than to modify an existing code and its data structures. The finite element model is 
described in section 2.1. 

Modules for the underlying crystal plasticity model are taken from an existing implementation in 
ALE3D (Becker, 2004). A brief description is given below. An idealized, two-dimensional (2-D) 
crystal geometry with three slip systems, oriented 60° apart, was implemented so that the 
formulation and algorithm development could be carried out more efficiently. Time integration 
of the constitutive model within the finite element code departs significantly from standard finite 
element time integration schemes and is described in section 2.4. 
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2.1 Explicit Finite Element Framework 

A 2-D, explicit finite element code was created as a framework to develop and evaluate the slip 
continuity model. It uses either constant strain triangle elements in a crossed-triangle 
configuration (Nagtegaal, Parks, and Rice, 1974) or constant strain quadrilaterals with hourglass 
control (Flanagan and Belytschko, 1981).  Time integration is with the second-order accurate 
“leap-frog” method, where positions, forces, and accelerations are evaluated at full time step 
intervals and velocities are evaluated at the midpoints of the time steps. In the absence of body 
forces, the momentum equation determines accelerations by 

                                                                                       

Updates to the velocity and position are evaluated, respectively, as 

                                                                                   

and 

                                                                                   

Written in the discretized finite element context, equation 1 becomes 

   
           

 

                                                        

where    is the derivative of the finite element shape function for node J of element M,    is 
the node mass, and    is the element volume. The summation is over all of the elements 
surrounding the node. Equation 4 implies a lumped mass matrix. The nodal mass contribution 
from each element is determined from integration of the element volume rather than simply 
dividing the element mass by four. This properly accounts for the element shape and provides a 
more consistent mass for the Flanagan-Belytschko element. 

The velocity gradient for element M is calculated using the mid-step configuration when 
determining     in order to achieve second-order accurate strain integration,  

           

 

                                                               

2.2 Crystal Kinematics 

The crystal plasticity model used in the current study follows from the widely used kinematic 
framework described by Asaro (1983) and first implemented in a finite element framework by 
Peirce, Asaro, and Needleman (1983). The deformation gradient,  , is notionally decomposed 
into elastic and plastic parts,    and   , respectively 
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The elastic part accounts for distortion and rotation of the crystal lattice, and the plastic part 
represents slip on predefined crystal planes and directions that moves material but does not alter 
the underlying crystal lattice. This is shown schematically in figure 1. The plastic part can be 
envisioned as the accumulated effect of slip on each slip system,   , with the reference 
crystallographic plane normals given by   

  and reference slip directions denoted by    . 

         
    

 

    

   

                                                             

The elastic part of the deformation gradient orients the lattice in the current configuration and 
distorts it consistent with the applied stresses.  

 

Figure 1.  Representation of the elastic-plastic decomposition  
of the deformation gradient. 

The intermediate configuration illustrated in figure 1 does not really exist, but it serves as a 
convenient reference frame for constructing the slip model. It is important to note that, while 
deformation gradient describes a compatible deformation field with no holes and a smoothly 
varying displacement field, the notional deformation fields associated with the elastic and plastic 
parts do not.  A crystal subjected to a non-affine (inhomogeneous) deformation, and conceptually 
unloaded elastically to the intermediate configuration shown in figure 1, may have cracks, holes, 
and/or overlaps. In addition, the total slip form represented in equation 7 and figure 1 is only 
applicable for small deformations or if the relative slip rates on the various slip systems are 
constant over the deformation history. The rate form of the model is more general. 

The velocity gradient,  , resulting from this kinematic description, creates an additive 
decomposition into elastic and plastic parts: 

               
  
          

  
   

  
                                 

F

F
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Applying the elastic part of the velocity gradient indicated by equation 8 to the rate form of 
equation 7 gives the plastic part of the velocity gradient as 

             
    

    
  
  

    

   

           

    

   

                            

where   and    are, respectively, the slip direction and slip plane normal in the current 
configuration.  The symmetric part of   is the plastic part of the rate of deformation tensor and 
the anti-symmetric part is the plastic spin, defined respectively by 

   
 

 
                  

    

   

        

    

   

                                   

   
 

 
                  

    

   

                                                                

2.3 Crystal Slip Constitutive Relations 

The crystal slip constitutive model relates the loading on the slip systems to the slip rate. A 
traditional approached is used, and the model is similar to that employed by Peirce, Asaro, and 
Needleman (1983). The loading variable,   , is constructed to be work conjugate to the slip rate 
so that the plastic dissipation on the slip systems is equal to the plastic dissipation expressed in 
terms of the continuum variables: 

                 

    

   

        

    

   

                                                

where    is defined in equation 10.  

The resolved shear stress,   , provides loading on the slip system, which results in a slip rate. A 
simple power law rate model is used here 

       
   

  

  
  

   

                                                                

The strength of the slip system,   , is typically a function of the deformation, and a simple 
power law form is assumed, 

     
                                                                         

where   is the accumulated slip, 
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In all of the simulations,        MPa,      ,        s–1,        , and        g/cm3. 
For the simulations with strain hardening in section 3.3,     . For the simulations in sections 
3.1 and 3.2, the strength is assumed to be constant by setting    . This facilitates focus on the 
new aspects of the model without the difficulty of deconvolving slip continuity effects from 
strain hardening effects. 

A complete anisotropic elastic treatment is available (Becker, 2004). However, as with strain 
hardening, inclusion of anisotropic elastic effects may create ambiguities when attributing 
behaviors to the new model features. Consequently, the elastic constants used in all simulations 
create an isotropic elastic response. The shear modulus is taken to be 27 GPa and the bulk 
modulus is 58 GPa. 

2.4 Non-local Slip Modeling 

The introduction slip continuity between neighboring finite elements is the main focus of this 
work. With the traditional crystal plasticity model and the finite element formulations described 
previously, the deformation of neighboring elements is only connected through shared nodal 
displacements and force equilibrium at the nodes. Even though dislocations associated with slip 
travel through the material, the transmission of dislocations from one element to another is not 
represented, and the resulting coordination in slip deformation is not captured. The effective 
result is that all finite element boundaries are infinite sources and sinks for dislocations. When 
viewed in terms of the elastically unloaded, intermediate configuration described in section 2.2, 
all of the discontinuity associated with the intermediate configuration is located at the element 
boundaries. Gradients of lattice orientation within elements are not captured when constant strain 
elements are used. 

The goal is to create the simplest model possible that captures the mutual effect of slip continuity 
on neighboring elements. This is conceptually most straightforward for edge dislocations in an 
idealized 2-D geometry where the directions of dislocation motion and slip are coincident. Screw 
dislocations, in which the material motion is orthogonal to the dislocation motion, do not exist in 
the 2-D crystal representation. These would create shear out of the plane. 

2.4.1 Slip Continuity 

The simplest approach is to enforce continuity of slip without changing anything else in the 
crystal plasticity formulation. The basic picture is that edge dislocations move along the slip 
direction from one element to another. The flux of dislocations crossing an area (one in-plane 
dimension and the out-of-plane dimension, w, assumed to be unity) for each slip system is 
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where       is the dislocation density (number of dislocations per unit in-plane area),    is the 
dislocation velocity, and   is the outward normal to the element face. Continuity is enforced by 
requiring that the flux exiting one element through a face equal the flux entering the neighboring 
element through the same face. The dislocation density, velocity, and the Burgers vector, b 
(displacement caused by the passing of a dislocation), are related to shearing rate by Orowan’s 
equation: 

        
                                                                              

For a shared element face, and assuming that the Burgers vector is constant, the flux continuity 
in the idealized 2-D crystal can be represented as 

                                                                                

where subscripts e1 and e2 denote the two elements sharing a face and           . The 
slip rates and slip direction are generally different for two adjacent elements in an 
inhomogeneous deformation field. The constraint can be enforced naturally if the primary flux 
variable for the solution were associated with the element faces. This approach is pursued. 

In an implicit formulation, this type of constraint would be enforced through the global system of 
equations. Such a global system solution is impracticable in an explicit dynamic approach where 
many time steps are required to track the wave motion.  

Here, an operator split approach is applied, where dislocation fluxes are determined on element 
faces during a first phase, and the deformation due to those fluxes is applied in the subsequent 
phase. This is facilitated by creating a two-pass material model. The first pass is the standard 
crystal plasticity model, outlined in sections 2.2 and 2.3, except that the only results retained 
from the model are the slip rates. The stresses and updates to the history variables are discarded. 
The slip rates from this first phase are averaged on the faces, giving values denoted as     , 
where the superscript   refers to the face number associated with the element. 

The slip rate for the element (either three-node triangle or four-node quadrilateral) is then 
determined from average dislocation flux through the faces as 

                     

      

   

             

      

   

                                      

where   is the length of the element face. This resulting element-centered slip rate is then used 
directly in a modified crystal plasticity module to update the stress and history variables for the 
next time step. 

Free surfaces, where dislocations exit without constraint, are treated as natural boundary 
conditions by this approach. No special boundary conditions need to be applied for free surfaces. 
Stiff boundaries, such as elastic substrates or hard precipitates, and tightly bound second phases, 
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can be modeled by zeroing the slip rate at those interfaces. Surfaces with intermediate constraint 
that may allow the passage, generation, or absorption of some dislocations, such as weak 
precipitates or grain boundaries, could be simulated by reducing the slip commensurate with the 
resistance of the boundary. Ideally, Robertson’s rules (Lee et al., 1989) for transmission of 
dislocations across grain boundaries could be implemented. 

2.4.2 Slip Gradient Effects 

A finite element in a Lagrangian crystal plasticity simulation represents a fixed material volume 
with dislocations fluxing into and out of the volume and dislocation generation within the 
volume. With the slip rates on faces used as primary solution variables, a straightforward 
application of Reynolds transport theorem over the volume V and enclosing surface S,  

 

  
     

    

 

  
     

 

  
  

 

      
           

 

                                              

can be used, along with dislocation nucleation and annihilation rates, to estimate a lower bound 
on the population of statistically stored dislocations in an element volume. The first term on the 
right-hand side represents generation of dislocations within an element and the second term 
represents accumulation due to flux across the element boundaries. Applying the divergence 
theorem, and recognizing that the slip direction is constant throughout the element volume for 
the chosen element types, the last term can be manipulated as 

     
           

 

         
          

 

           
        

 

               

 

     

The third integrand of equation 21 indicates the gradient in dislocation flux projected along the 
slip direction, and the last integrand relates the dislocation flux gradient to the gradient in slip 
rate through Orowan’s equation. The flux can be evaluated directly from the surface integral as 

     
           

 

      
             

      

   

                   

      

   

                  

where w is the out-of-plane depth. Taken together, equations 21 and 22 give the gradient of 
dislocation flux along a slip plane in terms of the associated slip rates on the element faces. 

The dislocations stored within an element volume are associated with an imbalance of 
dislocations entering and leaving the element, which is related to the dislocation flux gradients of 
equation 21. If occurring on a single slip plane, these dislocations create pileups leading to the 
Hall-Petch relation. If the excess dislocations are on many parallel slip planes, they are often 
associated with geometrically necessary dislocations accommodating the crystal lattice 
misorientation between subgrains. These subgrain walls serve as barriers to dislocation motion, 
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so both scenarios are hardening mechanisms. The potency of these mechanisms is related to the 
number of dislocations over a distance, and this provides a material length scale. Many of the 
extensions to the crystal plasticity model are based on pile-ups and geometrically necessary 
dislocations with the intent of incorporating a size scale into the model.  

As indicated earlier, the stored dislocations result from the dislocation flux gradients integrated 
through time. Using Orowan’s relation, the dislocation flux gradients are related to slip rate 
gradients, as shown in equation 21. In the current treatment, the content of stored dislocations is 
estimated by assuming a simple time integration of the slip rates from equations 21 and 22:  

 

 
             

 

   

 

 
 

 
          

 

 
 

 
             

      

   

                        

The time integration is only approximate because the path dependent aspects of the solution are 
neglected in this approach.     is a scalar measure, with units of inverse length, of the 
accumulated slip gradient projected along the slip plane. It serves as a surrogate for the 
dislocation content, either pipe-ups or geometrically necessary dislocations. 

The slip gradient is multiplied by the shear modulus,  , and a fixed material length scale factor, 
 , as a modification to the slip system strength given in equation 14: 

     
           

    

   

                                               

The parameter   governs the strength of the gradient contribution. For the simulations where 
gradient effects are included,          µm, and       for the simulations where the slip 
gradient does not affect the hardening. 

3. Results  

The primary result from the fiscal year 2011 (FY11) effort on this DRI is the non-local, explicit 
finite element code running a modified, operator-split, crystal plasticity model, where dislocation 
flux continuity is enforced through common variables at element boundaries and the crystal flow 
strength is modified based on calculated slip gradients. The code has restart capability and writes 
plot files in XDMF format (XDMF, 2011) for viewing with a standard finite element post-
processor. Since the focus of the work is introducing physics into the crystal plasticity model, 
large parallel runs are not needed and the implementation is serial. 
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3.1 Verification of Flux Continuity Implementation 

The finite element framework, the crystal model, and the gradient calculations have been verified 
through numerous unit program tests and large-scale simulations with known solutions and 
behaviors. The finite element and crystal model were checked with standard evaluations, which 
are not presented here. An example of a flux gradient verification simulation is the simple shear 
deformation shown in figures 2–4. Here the non-hardening single crystal sample is 10 µm tall 
and 5 µm wide with an element size of 0.5 µm. The top surface is given a constant velocity of 
105 µm/µs to the left and the bottom 3 µm of the crystal is held fixed. The intent is to provide an 
abrupt transition from no deformation in the lower one-third of the crystal to a simple shear 
deformation in the upper two-thirds. Periodic boundary conditions are applied across the 5-µm 
direction, so the multiple elements in the x-direction serve only to verify that the periodic 
boundary conditions are applied properly.  

Figure 2 shows slip rates and the gradient of the slip rates for slip systems 1 and 3 when the 
lattice is initially rotated 15° from the reference orientation. Slip continuity is not enforced in this 
simulation, and it provides a baseline result using the traditional crystal plasticity model. 
Focusing on slip system 1, the slip rates are 0.007829 µs–1 in the sheared region and zero in the 
non-sheared region below it (figure 2a). The slip rate at the interface between the two regions is 
half of this value. Multiplying this by the slip direction contribution across the interface (sin 15), 
and dividing by the grid spacing (0.5 µm), gives a slip rate gradient of 0.002026 µs–1-µm–1. This 
agrees with computed gradient in the elements below the interface to all four digits (figure 2b). 
The crystal lattice has distorted and rotated in the sheared elements above the interface to an 
orientation of 15.88°. The analytically computed slip gradient for this orientation is  
0.002142 µs–1-µm–1. This is within 0.4 % of the numerically calculated value, which also 
includes effects of crystal lattice shear on the slip direction that are not included in the 
analytically computed gradient. A similar analysis can be performed for slip system 3, where 
similar accuracy is attained.  

Figure 3 shows the result from a similar calculation but with the slip continuity enforced across 
element boundaries. The light blue element in figure 3a and the one immediately below it 
indicate a monotonic slip gradient for slip system 1.  The gradient is quantified in figure 3b, 
where the colors indicate that the slip changes monotonically away from the deformation 
discontinuity. Slip system 3, on the other hand, shows a non-monotonic slip rate pattern near the 
interface (figure 3c). This is more clearly seen in figure 3d as the color changes jump to extreme 
values on either side of the elements at a y-coordinate of 2.75 µm. This lack of monotonicity is a 
subject for later discussion. 
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(a)    (b)  

(c)    (d)  

Figure 2.  Simple shear of a crystal rotated 15° with the bottom 3 µm held fixed. Slip continuity  
is not enforced. (a) Slip rate on system 1, (b) slip gradient on system 1, (c) slip rate on system 3, 
and (d) slip gradient on system 3.  
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(a)   (b)  

(c)   (d)  

Figure 3.  Simple shear of a crystal rotated 15° with the bottom 3 mm held fixed. Slip continuity 
 is enforced. (a) Slip rate on system 1, (b) slip gradient on system 1, (c) slip rate on system 3, and 
(d) slip gradient on system 3. 
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Figure 4 shows results from a similar simple shear calculation with the crystal lattice in the 
reference orientation such that one of the slip directions is horizontal, parallel to the shearing 
direction. Here there is only slip on system 1, so only results from slip system 1 are presented. 
Due to the orientation of the crystal with respect to the grid, dislocations would not cross the 
horizontal element boundaries, and the slip continuity algorithm should not couple the 
deformation of neighboring elements. Figure 4a shows no indication of slip transmission, and 
this is confirmed by the gradient plot in figure 4b. This verifies that the simulations are only 
enforcing dislocation flux continuity when dislocations move across the element interfaces. 

(a)   (b)  

Figure 4.  Simple shear of a crystal rotated 0° with the bottom 3 mm held fixed. Slip continuity is  
enforced. (a) Slip rate on system 1 and (b) slip gradient on system 1. 

3.2 Example of Flux Continuity Effects in a Complex Deformation Field 

The behavior of the numerical integration, particularly the operator split on the crystal model, 
was evaluated using a punch simulation where the gradients are severe. A single crystal, 40 µm 
wide and 20 µm high, was deformed as if indented by a flat punch over the center third of the 
crystal. The punch displacement rate is 105 µm/s. The grid spacing for the quadrilateral mesh is 
0.25 µm in both x- and y-directions. The bottom surface is prevented from vertical motion and 
the lateral surfaces are traction free. The initial orientation of the crystal lattice is 15° from the 
reference orientation so that the deformation field is asymmetric. 

Plots of slip rate, on a logarithmic scale, are shown in figure 5 for the standard crystal plasticity 
model and the model with dislocation flux continuity enforced. As expected, enforcing 
dislocation flux continuity smoothes the fields along the highly strained bands and below the 
punch (figure 5b), but it does not appear to be excessively dispersive. It also does not appear to 
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diminish the peak slip rates significantly when comparing the sheared bands emanating from 
either side of the punch.  

(a)  

(b)  

Figure 5.  Slip rate contours for single crystal initially orientated 15° (a) without slip continuity  
enforced and (b) with slip continuity enforced. 

Contours of crystal lattice rotation, with and without dislocation flux continuity enforced, are 
shown in figure 6.  The enforcement does little to the positive lattice rotations on the left side of 
the punch where the rotation is focused in a narrow band. However, the peak negative rotation is 
significantly diminished by enforcing slip continuity, and the rotation field below the punch is 
also more diffuse. This is consistent with the spreading of the slip rate contours in figure 5 and is 
expected from the additional constraints imposed on the crystal deformation. 
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(a)  

(b)  

Figure 6.  Crystal lattice rotation contours for single crystal initially orientated 15° (a) without slip 
continuity enforced and (b) with slip continuity enforced. 

The punch load for the simulation with flux continuity imposed is approximately 0.5% lower 
than the punch load from the standard crystal plastic simulation. Since the slip system strength is 
prescribed to be constant in these calculations, the lower load implies that the crystal lattice is in 
a slightly softer orientation when dislocation flux continuity is enforced. Understanding this will 
require further exploration. 

3.3 Exploration of Gradient Effects on Length Scale 

A simple shear simulation on a thin film is run as a preliminary assessment of the effects of 
increasing slip resistance due to gradients in dislocation density. Strain hardening,  = 0.5, is 
included to smooth inhomogeneities in the deformation field triggered by noise in the explicit 
solution. Three sets of simulations are run: the baseline crystal plasticity model, enforcing 
dislocation flux continuity, and inclusion of gradient hardening in addition to enforcing 
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dislocation flux continuity. The lattice orientation is initially 15°, and periodic boundary 
conditions are applied so that only a single column of elements is needed. The film is 
sandwiched between, and perfectly bonded to, two stiff, horizontal dies that prohibit dislocation 
transmission. This creates a slip gradient that changes as the thickness of the film is varied. 
Simulations are run for a 10-µm-thick and a 1-µm-thick film to ascertain the size scale effect.   

The slip rates are plotted in figure 7 for the 10-µm-thick film and in figure 8 for the 1-µm-thick 
film at a shear strain of 0.05. As expected, the standard crystal plasticity model (figures 7a and 
8a) is strained uniformly through the thickness and the behavior is the same for the two film 
thicknesses. Since the model shears uniformly, the sides of the model are linear. With dislocation 
flux continuity enforced at element boundaries and zero flux enforced at the film boundaries 
(figures 7b and 8b), the slip is not uniform through the thickness. The slip rate in the elements 
near the surface is reduced due to the flux boundary condition, and the slip rate is highest in the 
second element from the surfaces. While there is some difference in slip rate with film thickness, 
it is not significant compared to the strength of the gradient near the surfaces. The sides of the 
model are not straight. There is a kink near the surfaces, where the slip rate is highest, and the 
center portion appears linear.  

The addition of hardening associated with slip gradients modifies the deformation patterns in 
figures 7c and 8c. The total slip rate varies continuously through the thickness, and the specimen 
profile is sigmoidal. The slip rate is relatively uniform in the center of the 10-µm-thick film, and 
the gradient is concentrated at the surfaces. The gradient is spread over the entire thickness of the 
1-m-thick film. This is also reflected in the greater curvature of the thinner film.   
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(a)     (b)     (c)  

Figure 7.  Slip rate sum for 10-µm-thick film simulations: (a) traditional crystal plasticity,  
(b) with slip continuity enforced, and (c) with slip continuity and strengthening  
from slip gradients. 

(a)     (b)     (c)  

Figure 8.  Slip rate sum for 1-m-thick film simulations: (a) traditional crystal plasticity, (b) with slip 
continuity enforced, and (c) with slip continuity and strengthening from slip gradients. 
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Slip gradients, at a shear strain of 0.05, are shown in figure 9 for the 10-µm-thick film and in 
figure 10 for the 1-µm-thick film. Gradients are presented for slip systems 1 and 3 for the 
calculations with dislocation flux continuity enforced and the calculations with flux enforced 
plus gradient effects on hardening. The gradients from the standard crystal model are identically 
zero and are not shown. The gradients reflect the slip distributions given in figures 7 and 8. Just 
enforcing dislocation flux continuity affects only the elements near the surface, and there is no 
appreciable size scale effect. When the slip gradient modifies the strain hardening, the gradient 
on slip system 3 is significantly different for the two film thicknesses. The gradient is smooth 
and monotonic for the thinner film (figure 10c) but not for the thicker film (figure 9c). 

(a)    (b)    (c)    (d)  

Figure 9.  Slip gradient on systems 1 and 3 for 10-m-thick film simulations: (a) and (b) with slip continuity 
enforced and (c) and (d) with slip continuity and strengthening from slip gradients. 



 

19 

(a)  (b)  (c)  (d)  

Figure 10.  Slip gradient on systems 1 and 3 for 1-m-thick film simulations: (a) and (b) with slip continuity 
enforced and (c) and (d) with slip continuity and strengthening from slip gradients. 

The effect of dislocation flux continuity and gradient hardening is illustrated by the stress-strain 
curves in figure 11. The response of the standard crystal model is the same regardless of film 
thickness. The enforcement of dislocation flux continuity between the elements modifies the 
response slightly, but not enough to create a distinct line on this plot. Thus, curves from four of 
the six calculations appear coincident in figure 11. The effects of including gradient hardening 
are evident. The response of the 10-µm-thick film departs perceptibly from the baseline model, 
and the stress in the thinner, 1-µm-thick, film is substantially greater. It should be noted that if 
the crystal is initially in the reference orientation, with the crystal slip parallel to the boundaries, 
the dislocation flux across the horizontal element faces is zero. Consequently, there would be no 
flux gradient across the elements and no size effect.  
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Figure 11.  Stress strain curves from 1-µm-thick and 10-µm-thick films with  
standard crystal plasticity, with dislocation flux enforced and  
with flux enforced plus gradient strengthening. 

4. Discussion and Future Directions 

The crossed-triangle elements were implemented as a way to align element boundaries with slip 
planes in an effort to capture sharper gradients in the deformation field. Unfortunately, the 
crossed triangles still appear to give stiffer response than the constant stress quadrilaterals in 
most circumstances (results not shown). For large meshes using quadrilateral elements, the ratio 
of number of degrees of freedom to the number of incompressibility constraints enforced by the 
elements is 2. The crossed triangles, through a geometric serendipity (Nagtegaal et al., 1974), are 
not over-constrained like unstructured triangular meshes. However, the ratio of degrees of 
freedom to incompressibility constraints is only 4/3. Consequently, the overall response is 
somewhat stiffer than the quadrilaterals even though the slip aligns with element boundaries. 
These elements will continue to be evaluated as advancements are made to the code, since 
having element boundaries aligned with the slip planes could still prove useful. 

Enforcing dislocation flux continuity by the operator split approach described in section 2.4 
appears appropriate for smoothly varying slip fields, as in the punch problem, but the abrupt 
discontinuity evidenced in the simple shear examples is problematic. The oscillatory behavior 
has the appearance of an hourglass mode. But it could also indicate that an upwinding scheme is 
needed to deal with the sharp advecting gradients. The nature of the oscillatory behavior needs to 
be explored further before proposing a remedy. A susceptibility to hourglassing could be 
inherent in the chosen variable placement on the element combined with a lack of constraint on 
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the slip gradients at element faces. Physical stabilization of the hourglass modes would involve 
penalizing slip gradients from element to element by introducing additional constraints at 
element faces. Upwinding would involve consideration of longer-range gradients or, perhaps, 
borrowing ideas from the Streamline-Upwind Petrov-Galerkin methods used in finite element 
simulations of fluids. In either case, further development of the numerical approach will be 
needed. This could prove challenging. 

Enforcing slip continuity does smooth the deformation field, as anticipated. However, slip 
continuity in the crystal plasticity model does not, by itself, appear to be sufficient to induce a 
proper length scale dependence in the simulations. Thus, the simple enhancement, while 
physically appropriate, is likely not adequate. Extending this framework to include gradient 
terms in the hardening relation to represent dislocation pileups and geometrically necessary 
dislocations does provide a length scale, consistent with results from numerous prior studies 
(e.g., Arsenlis et al., 2004; Gerken and Dawson, 2008; Gurtin et al., 2007; Mayeur et al., 2011). 
However, even with gradient hardening, the initial yield strength of the single crystal, indicated 
in figure 11, is unaffected. This suggests that some important physical mechanism is still 
missing. 

The current approach is distinct from the past work in the primary variables used to calculate the 
gradients and the implications for boundary conditions.  The proposed method uses fundamental 
quantities already existing in the solution, i.e., crystal slip rates, and physically intuitive 
boundary conditions can be applied. Other approaches introduce new degrees of freedom, such 
as dislocation density or geometrically necessary dislocations, which have no obvious boundary 
prescription. This has been an impediment to their use that could be ameliorated by the current 
approach. 
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6. Transitions 

It is envisioned that a continuum crystal plasticity model that enforces dislocation flux continuity 
between adjacent elements will introduce a length scale into grain-scale continuum simulations, 
thereby enhancing multiscale modeling capabilities. The model could be used in grain-scale 
deformation simulation of metals, ceramics, and explosive materials to represent constraints of 
grain boundaries and surfaces more accurately. The capability aligns with crystal plasticity 
efforts envisioned for the Materials in Extreme Dynamics Environment Cooperative Research 
Alliance, anticipated to begin in fiscal year 2012 (FY12), which will serve as a venue for 
continued research both across the Weapons and Materials Research Directorate (WMRD) and 
with the Alliance.  
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